Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity.

نویسندگان

  • Miklós Tóth
  • Zoltán Kukor
  • Sándor Valent
چکیده

The aim of this study was to characterize the mechanism of the chemical interaction between L-ascorbic acid (ASC) and tetrahydrobiopterin (BH(4)) in vitro and to examine its effect on the activity of endothelial nitric oxide synthase (eNOS) in first trimester human placentae. At room temperature, in Tris-HCl buffer (pH 7.4), both ASC and BH(4) were readily oxidized by dissolved O(2) or H(2)O(2). BH(4) was more sensitive to auto-oxidation, while ASC was more susceptible to oxidation by H(2)O(2). Addition of 36 micromol/l BH(4) to 143 micromol/l ASC increased the initial rate of ASC oxidation 3.2-fold in a catalase-sensitive manner, indicating that enhanced ASC oxidation is partly due to the formation of H(2)O(2). In the presence of catalase, BH(4) still stimulated 1.9-fold the initial rate of ASC oxidation, suggesting that another auto-oxidation product of BH(4), most probably quininoid-BH(2) (qBH(2)), could also stimulate ASC oxidation while itself being reduced back to BH(4). ASC prevented the auto-oxidation of BH(4) in a concentration-dependent fashion, with 3 mmol/l ASC providing an almost complete stabilization of 25 micromol/l BH(4). Importantly, basal eNOS activity in placental microsomes was stimulated 2.5-fold by 0.5 micromol/l BH(4), and 0.5 mmol/l ASC enhanced the BH(4)-stimulation 1.4-fold, with a smaller effect on basal eNOS activity. Taken together, the findings support the notion that the stabilizing action of ASC on BH(4) is related to the ASC-mediated reductive reversal of the auto-oxidation process of BH(4). Moreover, we demonstrated that concentrations of ASC present in the placenta as a common vitamin C supply are sufficient to protect cellular free BH(4) and may contribute to the stimulation of placental eNOS activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin.

Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 microm to 1 mm,...

متن کامل

Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.

In cultured endothelial cells, the antioxidant, L-ascorbic acid (vitamin C), increases nitric oxide synthase (NOS) enzyme activity via chemical stabilization of tetrahydrobiopterin. Our objective was to determine the effect of vitamin C on NOS function and tetrahydrobiopterin metabolism in vivo. Twenty-six to twenty-eight weeks of diet supplementation with vitamin C (1%/kg chow) significantly i...

متن کامل

Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin.

Ascorbic acid enhances NO bioactivity in patients with vascular disease through unclear mechanism(s). We investigated the role of intracellular ascorbic acid in endothelium-derived NO bioactivity. Incubation of porcine aortic endothelial cells (PAECs) with ascorbic acid produced time- and dose-dependent intracellular ascorbic acid accumulation that enhanced NO bioactivity by 70% measured as A23...

متن کامل

Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells.

Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production onl...

متن کامل

Endothelial nitric oxide synthase activity involves in the protective effect of ascorbic acid against penicillin-induced epileptiform activity

Ascorbic acid and nitric oxide are known to play important roles in epilepsy. The aim of present study was to identify the involvement of nitric oxide (NO) in the anticonvulsant effects of ascorbic acid on penicillin-induced epileptiform activity in rats. Intracortical injection of penicillin (500, International Units (IU)) into the left sensorimotor cortex induced epileptiform activity within ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2002